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Physics - Matters

Solid

Structures:

· Crystalline solids

· Atoms and molecules are arranged in a regular manner

· Crystal consists of a basic structure that repeated many times to form the whole crystal

· Unit cell

· Example: Ionic salt, metallic lattice, graphite

· Amorphous solids

· Atoms arranged in no order

· Have no long range order which the crystalline solids have

Extension & length:

· When an external force is applied to a wire, it extended / has deformation

When the force vanished, the wire return to the original state

· Elastic

· The tension force F applied to the wire is proportional to its extension (
· Tension required to produce the extension ( ( Cross-sectional area A of the wire

· Under a particular tension, extension ( ( Length of the wire (
· 
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the proportionality constant E is called Young modulus
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· A measure of stiffness

Stress & strain:

· Stress: Tension per unit cross-sectional area

· Tensile stress
: 
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· Strain: Extension per unit length of wire, i.e. fractional elongation
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· Stress ( Strain:
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· Hooke’s Law

Stress-strain curve:

·  ( u only if stress is small

· Material deforms elastically and obeys Hooke’s law

· Btw proportional limit P and elastic limit L, stress-strain relation is not linear but still in elastic deformation

· Usually, smaller stress causes a larger strain than usual

· The material is less stiff

· Exceeds elastic limit, the material undergoes plastic deformation

· When stress removed, the material does not return to the original state

· Permanent deformation

· Before Y, the material return to O' instead of O when stress removed

· Beyond yield point Y,  The material stays where it is when the stress is removed

· Thinning

· Breaking stress M is the maximum stress a material can withstand

· Tensile strength
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Compression: Negative stress

· Hooke’s law holds for small compression

· For large compression, the material is stiffer than tension

Mechanical Properties:

· Stiffness: Resistance to deformation under the application of forces

· Stiff material has a higher Young modulus than a soft material

· Strength: Ability to withstand forces without breaking

· Strong material has a higher breaking stress than a weak material

· Ductility: A ductile material elongates appreciably before it breaks

· Displays a large among of plastic deformation

Brittleness: A brittle material breaks soon after the yield point is reached

· Can withstand only small deformations

· Stiff but not strong

Energy:

· Material at its natural state has the lowest energy

· When material is stretched / compressed, it possess a higher PE U
· Increased PE U = Work done W to deform the object

Work done: 
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· A solid of unit length and unit cross-sectional area, 
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· PE stored per unit volume

· A solid of length ( & cross-sectional area A, total PE stored: 
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· Elastic deformation: The PE absorbed is released completely when stress removed

· Plastic deformation: The PE absorbed is partially released when stress removed, but partially used to deform the object to other shape

Elastic Hysteresis:

· Stress-strain behavior of rubber is different from other crystalline solid:

· Has a large range of elasticity

· Does not obey Hooke’s law within elastic limit

· Soft at small strains but stiff at large strains

· In microscopic view, rubber comprising molecular chains coil up and tangle with one another

· [image: image71.wmf]u
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· Further strain after straightened out ( Much greater stress required

· Stress removed ( Coil up again

· In stress-strain curve, stretching & relaxing behavior differs

· The curves for stretching & relaxing does not coincide

· Elastic hysteresis

· The area bounded by hysteresis loop is the energy absorbed by rubber

· Energy absorbed as heat (internal fiction of molecular chains)

Intermolecular forces & potential:

· In a solid, atoms are held together by inter-atomic forces

· When atoms are too close, the inter-penetration of electron shells produce a repulsive force

· When atoms are close, bonding formed by inter-atomic electrostatic attraction

· When atoms are too far apart, the inter-atomic forces are negligible
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Distance btw neighboring atoms = r
· The PE U btw two atoms depends on r
· U is minimum at the equilibrium separation r0
· Not squeezed nor extended

· Umin is the bond energy

· Force:
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· F  0: Net repulsion, r  r0
· F  0: Net attraction, r  r0
Near r0, the F-r graph is approx. linear

· For small stress, Force ( Extension or compression

Interpretation of Young’s modulus:

· Consider an analog model of solid: Particles linked by springs in a cubic array

· Cross-sectional area = A
· Length of a side = (
· Equilibrium separation btw atoms = x
· Force constant of each spring = k
When the cubic array is stretched for an extension (,

· No. of atoms stretched = No. of atoms on cross-sectional surface =
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· Extension on each spring = x
· 
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· Total stretching force required: 
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· Stress: 
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· Strain: 
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· Young’s modulus: 
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Thermal expansion:

· The U-r graph is asymmetric about r0
· Steeper for compression and flatter for stretching

· Let U = –U0 when r = r0
· At 0K, atoms in a material are stationary at r0
· KE = 0; PE = –U0
· Above 0K, there is some thermal energy in the material

· KE  0; Atoms oscillate about the equilibrium position r0
· Some molecular KE will turn to molecular PE during oscillation

· Conservation of energy

· U rose, the atoms oscillating btw r = a & r = b
· Mean interatomic separation = m
Raising temperature, U rose as more thermal energy in the material

· The atoms oscillating btw r = a' & r = b'
· Mean interatomic separation = m'
· Since m'  m, the average distance btw atoms increased, the solid expanded

Fluids in Motion

Flow of fluid:

Turbulent flow: The fluid flows in irregular paths

· Eddies may form

· Depriving energy from the system

· Streamlined flow
: The fluid flows in layers without fluctuations or turbulence

· Flow velocity at a fixed pt is constant and independent of time

· Turbulence occur or not depends on the flow velocity and shape of the objects

· If an fluid flowing in a tube,

· Volume of fluid in the tube is fixed

In same time interval t, Mass of fluid flowing into the tube = Mass flowing out of the tube
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1A1v1t = 2A2v2t  (  1A1v1 = 2A2v2
· Equation of continuity: Av = Constant

· If the fluid is incompressible, A1v1 = A2v2
· Speed of flow at smaller cross-sectional area is higher

Bernoulli’s Principle:

· Ideal fluids:

· Non-viscous: No mechanical energy can be converted into internal energy

· Incompressible: Density  of the fluid is constant

· Fluid is moving with streamlined flow / steady flow: No turbulence

Irrotational flow: Fluid has tranlational motion only

· When a ideal fluid is flowing in a tube:
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In time interval t, mass of fluid transferred in:


m = A1v1t
· Mass of fluid transferred out:
 m = A2v2t
· The fluid flows up as there is a pressure difference

Net force pushes the fluid up = P1A1 – P2A2
( Total work done: P1A1v1t – P2A2v2t =
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· Ek 
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· Ep = mgh2 – mgh1 = mg(h2 – h1)
· Total work done = Ek + Ep
( 
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· Bernoulli’s equation: 
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· As the speed of fluid flow increases, fluid pressure reduces

· If there is a flow speed difference round an object, pressure difference would be created
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Application of Bernoulli’s principle:

· Airfoil

· Upper side has a more curved surface than lower side

· The upper side increases the speed of air flow

· [image: image78.wmf]Speed
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The pressure difference set up to create a net lifting force

· Spinning golf ball

· When a ball spin through the air, air is dragged by the spinning motion

· The spinning cause an increase of air flow on one side and decrease on other side due to the viscous force

· Unequal pressure set up on opposite sides
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· Yacht sailing

· The sail of a yacht has the shape of airfoil

· When a yacht sailing against the wind, its sail is rotated

· On the windward side, it has a faster flow

· On the leeward side, it has a slower flow

· A force causing the yacht to move

· Jets & Nozzles

· [image: image80.wmf]Flow
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When a fluid flow through a horizontal pipe from a large cross-section to a smaller cross-section, its velocity increases

· The jets & nozzles are having a constriction to produce the effect

· Example: Bunsen burner, Filter pump, Spray, Carburetors

· Bunsen burner:

· The town gas is injected to the Bunsen burner thou’ a jet

· Faster flow & lower pressure

· The lower pressure inside causes sucking of air from air hole

· Higher oxygen-town gas ratio, better combustion

· [image: image81.wmf]Lifting force
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Filter pump:

· When water passing thou’ the jet in filter pump, pressure dec.

· The dec. in pressure sucks air from the chamber

· The chamber is evacuated
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· Paint sprayer:

· When air blown thou’ the nozzle, pressure at nozzle dec.

· [image: image83.wmf]Town
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The dec. in pressure causes stagnant air inside exert pressure to push the paint out

· Carburetor:

· Carburetor is used to mix air w/fuel to prepare for the engine

· When air is drawn thou’ the narrow duct, its pressure dec.

· The reduced pressure sucks up fuel and mix w/air

· The proportion of air & fuel is controlled by the pressure, i.e. size of duct

Measuring devices:

· Venturi meter:

· Venturi meter is a horizontal pipe w/a constriction

· Cross-sectional area of the pipe = A1; Fluid speed = v1
· Cross-sectional area of the constriction = A2; Fluid speed = v2
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· Liquid level ( Pressure

· [image: image85.wmf]Air
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· Pitot Tube:

· Pitot tube is a manometer w/two tubes, namely the total tube & static tube

· At the mouth of total tube T, the fluid stagnates, fluid speed vt=0

· At the mouth of static tube S, the fluid moves at speed vs = v
· Flows at undisturbed flow speed

· At points S & T, the pressures can be related by:
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· Speed of flow: 
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Gases

Gas Law:

· Boyle’s Law: For a fixed mass m of gas at constant temperature T, the pressure P of the gas is inversely proportional to its volume V
· PV = Constant

· Gases that obey Boyle’s law exactly is called ideal gas
· Most gases obey Boyle’s law well at low pressure and high temperature

· Pressure Law: At fixed m and V, P ( T
· Charles’ Law: At fixed m and P, V ( T
· Ideal gas equation: PV = n R T
· R = Universal molar gas constant = 8.3145 J K–1mol–1
Avogardro’s Law:

· Under same V, T & P; two ideal gases contain equal number of molecules

· In PaVa = naRTa
and  PbVb = nbRTb , if Pa=Pb; Va = Vb; Ta = Tb, then na =​ nb
· 1 mol ideal gas in std T (273.15K) & P (1.013(105 Pa) has a vol. 22.4 dm3
Microscopic Definition of Ideal Gas:

· Large separation btw molecules w.r.t. their size

· Gas molecules occupy negligible volume

· Gas molecules are point masses

· Molecules are in random motion & obey Newton’s Laws

· Molecules move in all directions with equal probability

· Constant distribution of various molecular speeds

· Gas molecules undergo perfectly elastic collision

· Molecular kinetic energy is conserved

· Intermolecular forces / interactions are short-range and negligible

· Intermolecular attraction / repulsion would not alter the volume

Kinetic Theory Model:

· Assume a gas comprising N molecules each of mass m trapped in a cubic box of vol. (3
· For a molecule moving with velocity 
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, consider its x-direction component 
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· When it collides with the wall of the cubic box, it undergoes perfectly elastic collision

· The molecule rebounds in reversed direction with same speed

Momentum change p = mu – m(–u) = 2mu
· After it rebounds, it moves toward the opposite wall

· It collides with the wall on opposite side after time
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· Period for the molecule collides on the same wall: 
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Force exerted by the gas molecule over a long period: 
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· Total force exerted by N molecules: 
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· 
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· Pressure experienced by the wall: 
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· Since 
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 as gases are in random motion

· 
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· By defining the root-mean-square speed 
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where n = no. of mole of gas; M = molar mass of gas

· 
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Temperature & Energy:

· 
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( Pressure ( Molecular translational K.E. of the gas

· 
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· Total internal energy of a gas: 
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· 
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· Boltzmann’s constant =
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· Avogardro’s number = NA = 6.022 ( 10–23 mol–1
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· Avg K.E. of gas molecule ( Absolute temperature of gas

Distribution of molecular speeds:

· 
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and 
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· R.m.s. Speed of gas molecule: 
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· As the temperature inc., the rms speed of gas inc.

· The various speed of gas follows the Maxwell-Boltzmann distribution

· When temperature inc., the peak of the curve shift to right

· Area under the curve = No. of molecules = Constant

· [image: image86.wmf]Air
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· The curve is spread out as temperature inc.

Real Gases:

· Real gases differ ideal gases as:

· Have a finite size

· Possess intermolecular interaction

· Dipole-dipole interaction at most times

· Electron cloud repulsion when collides

· Due to the differences, the ideal gas equation PV = nRT is not applicable:

· Pressure is less: When gas molecules strike on the wall, attraction retarded the effect

· Volume is greater: Repulsive force reduces the space where a molecule can move

· The gas molecules occupies spaces makes the measured volume  actual free volume
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For pressure, a positive correction k is added

· Pressure = P + k

where 
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· Fore volume, a negative correction nb is made

· Increase in volume ( Amount of gas molecules

· Volume = V – nb
Van der Waals’ equation of state: 
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for some constants a and b w.r.t. to a particular gas

· 
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 is the correction for the pressure affected by intermolecular attraction

· nb is the correction for the volume affected by the volume occupied by molecular size

· The van der Waals’ eqn accurately describing the behavior of real gas at high temperature

· On or above the critical temperature

· Above the critical temp., the P-V curve (isotherm) shows a rectangular hyperbola

· At critical temp., the isotherm has a pt of inflexion C representing the critical point

· At the critical point, gas, vapor
 & liquid exists in equilibrium

· Below the critical temp., the isotherm has a part of flat curves

· At the flat part of the curve, it is in liquid-vapor phase equilibrium

Thermodynamics

Energy: The capacity to do work

Internal Energy: Total energy possessed by a substance or a system

· Includes molecular kinetic energy and molecular potential energy

Heat & Energy:

· Matters possess internal energy due to its internal state

· Molecular KE due to molecular motion

· Measured by absolute temperature

· Intermolecular PE due to intermolecular interactions

· More separated molecules, greater PE

· Internal energy U of an object may change by:

· Work
 done W by the object

· Heating
 the object to give it energy Q
· By convection, conduction or radiation from one body to another

Laws of Thermodynamics:

Zeroth law of thermodynamics states that when each of two systems is in equilibrium with a third, the first two systems must be in equilibrium with each other
· First law of thermodynamics states that an object gains internal energy due to heat transfer and work done on it

· U = Q – W
· U = Change of internal energy

· +
: Gain of internal energy
–
: Loss of internal energy

· Q = Energy transferred during heating

· +
: Energy transferred to the system
–
: Energy transferred out of the system

· W = Work done

· +
: Work done by the system on another
–
: Work done on the system by another

Second law of thermodynamics states that the entropy of an isolated system can never decrease

· Heat-engine version: No continually working heat engine can take heat from a source and convert it completely into work

· An isolated system is the one which U = Q = W = 0  (Internal energy keeps constant)

Maximum efficiency of a heat engine: 
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· T2 = Source temperature in K

· T1 = Sink temperature in K

· Third law of thermodynamics states that the temperature of 0K can be approached arbitrarily closely, but it can never be reached

Gas System:

A gas under pressure P and has a definite volume V, when it expands for V,
  Work done by the gas = PV =
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· When it expands, V  0, work done by the gas, W > 0, temperature dec.

· When it compresses, V  0, work done on the gas, W < 0, temperature inc.

· In isovolumetric process, keeping V = 0

W = 0, Q = U
· In isobaric process, keeping P = 0

· 
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In isothermal process, keeping T = 0

· The process is slow to allow heat exchange to maintain constant T
· It is held in a thin-walled, highly conducting vessel surrounding by a constant temperature bath

· [image: image88.wmf]h
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As U ( T, U = 0

· Q = W
· 
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· In adiabatic process, Q = 0

· No heat exchange occurred

· The process is rapid to prevent heat exchange

· It is held in a thick-walled, highly insulated vessel

· U = –W
PV = constant

where 
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·  = 1.67 for monoatomic gas;  = 1.40 for diatomic gas;  = 1.30 for polyatomic gas

Degradation of energy:

· The nature has a tendency to move toward a state of disorder

A higher grade energy can change to a lower grade energy completely;
a lower grade energy transform to a higher grade energy can never complete

· Higher grade energy can be transformed w/higher efficiency

· All the energy ultimately becomes internal energy of the surroundings thou’ being used to overcome friction, in which the internal energy is an useless energy

· Energy is degraded

· Primary energy resources: Naturally occurring fuels (e.g. coal, gas)

· Secondary fuels: Electricity, petrol, etc.

· Renewable sources: Energy sources that can be replenished naturally and thus inexhaustible

· Example: Solar energy, wind, tidal, geothermal, wave
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� Tensile stress is the stress to produce longitudinal elongation or compression


� Streamlined flow = Steady flow


� The critical temperature is the temperature above which a gas cannot be liquefied by applying high pressure


� When gas above the critical temp., it is called as ‘gas’; when it is below the critical temp., it is called as ‘vapor’


� Molecular motion cans be translational, rotational or vibrational motions


� Work is a process to transfer energy from one body to another by means of application of a force for a distance


� Heat is a process to transfer energy from one body to another by means of temperature difference
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