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Pure Math – Polynomials & Equations

Polynomials

Polynomial in x over the set of all real numbers is a finite expression in the form 
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 where ai(ℝ
( P(x) (ℝ[x]
( ai is called the coefficient

( a0 is called the constant term

( an is called the leading coefficient

(
If the leading coefficient is 1, the polynomial is a monic polynomial

( If an(0, n is called the degree of the polynomial P(x)

( deg P(x) = n

( deg x = 0
(x(ℝ\{0}

( deg 0 = –(
Properties of the degree:

· Let 
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· f(x) = g(x)
iff  (deg f = deg g) ( (ak = bk , (k ( def f, k(ℕ)
· 
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0 ( deg( f + g) ( max(m, n)
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deg( fg) = m+n
Properties of the polynomial:

· p, q (ℝ[x] ( p+q (ℝ[x]

(Closure property)
· p, q (ℝ[x] ( p(q (ℝ[x]

(Closure property)
· p, q, r (ℝ[x] ( p+(q+r) = (p+q)+r

(Associative law)

· p, q, r (ℝ[x] ( p ( (q ( r) = (p ( q) ( r

(Associative law)

· p+q = q+p 



(Commutative law)

· p ( q = q ( p 




(Commutative law)

· p+0 = 0+p = p



(Existence of identity)

· p+(–p) = (–p)+p = 0

(Existence of inverse)

· 1(p = p





(Existence of identity)

· , (ℝ, (p) = () p
· (ℝ, (p+q) = p + q


(Distributive law)

· (ℝ, ()p = p + p
(Distributive law)

· p, q, r (ℝ[x] ( p ( (q+r) = p ( q + p ( r

(Distributive law)

· pq=0  (  (p = 0) ( (q = 0)

· p(ℝ[x]\{0},
pq=pr  (  q = r
Division

Division Algorithm: 

((f, g (ℝ[x]) ( (f ( 0) ( (g ( 0) ( ((!q(ℝ[x] ) ( ((!r(ℝ[x] ) ( (deg r < deg g) s.t. f ( qg + r

Properties of integral division:

· (a, b ( ℤ) (a ( 0)
( a | b ( b = ma ((m(ℕ) )
· (a | b) ( (b | c) ( (a | c)
· (a | b) ( (b | a) ( a = (b

· a | a
(a(ℤ\{0}

· a | 0
(a(ℤ\{0}

· a | b ( a | bc

(c(ℤ\{0}

· (c | a) ( (c | b) ( c | ma+nb

(m, n(ℤ
Greatest Common Divisor (GCD): 

(a, b(ℤ 
p is the GCD of a, b iff:

(i)
(p | a) ( (p | b)

(ii) 
(q
(q| a) ( (q| b) ( q| p

(
Denoted by (a, b) = p
Synthetic Division: 

· 
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g(x)=x–a

R(ℝ
· if
f(x) = g(x) q(x) + R
then:
· n = m + 1
· q(x)g(x)+R = bmxm+1+ (bm–1–abm) xm + …+ (bk–1–abk) xk + … + (R–ab0)
· 
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= bmxm+1+ (bm–1–abm) xm + …+ (bk–1–abk) xk + … + (R–ab0)
· an = bm

f(x) =
an
an–1
an–2
…
a2
a1
a0

+ )

abm
abm–1
…
ab2
ab1
ab0


q(x) =
bm
bm–1
bm–2
…
b1
b0
R
· ak = bk–1 – abk
· a1 = b0 – ab1
· a0 = R – ab0
Euclidean Algorithm: 

· f(x) = p(x) q(x) ( p(x) | f(x) ( q(x) | f(x)
· g(x) = p(x) q'(x) ( f(x) = p(x) q(x)
( p(x) | g(x) ( p(x) | f(x)
( p(x) is the common divisor of f(x) and g(x)
· ( f, g)=d(x)
iff
(i)
d(x) | f(x) ( d(x) | g(x)


(ii)
d’(x) | f(x) ( d’(x) | g(x)
(  d’(x) | d(x)

· Polynomials f, g are relative prime
 iff deg ( f, g) = 1

( af + bg = 1 for some polynomials a, b
· Polynomials f, g are not relative prime iff af = bg for some polynomials a, b
· d(x) | d’(x) ( d’(x) | d(x)
(  d’(x) = k d(x) 
(k(ℤ
· f, g, q, r(ℝ[x] ( f=qg+r, 
(d(ℝ[x]
s.t. 
( f, g) = (g, r) = d
Euclidean Algorithm states that for any non-zero polynomials f(x) and g(x), where 
f (x)=q(x) g(x)+ r (x), over the set of real numbers, there exists a g.c.d. d(x) of f (x) and g(x) s.t. 
( f (x), g(x)) = (g(x), r(x)) = d(x)
Polynomial Equations

Zero of polynomial:  is a zero of a polynomial iff P()=0

Factor Theorem: 

· Remainder Theorem:
(( f (x) (ℝ[x] ( deg f = n ( 1)
(c(ℝ  (!q(x)(ℝ[x] ( deg q = n–1  s.t. f (x) ( (x–c) q(x) + f (c)
· Factor Theorem:
(f (x) ( ℝ[x] ( deg f = n ( 1,  (c(ℝ s.t. f (c)=0 ( f (x) ( (x–c) q(x)  (q(x)(ℝ[x] ( deg q = n–1
(
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n(ℕodd
· f (x) (ℝ[x].  If 
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(ℂ are distinct roots of f (x)=0, then
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 (g(x)(ℂ[x]
(
f (x) (ℝ[x] ( deg f = n,
f (x)=0 has at most n distinct (complex) roots

(
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= 0 for substitution of n+1 distinct values for the indeterminate x,
then ak = 0 for k =
[image: image15.wmf]{

}

n

i

1


( f (x), g(x) ( ℝ[x]
( deg f = deg g = n,

f (c) = g(c) for n+1 distinct c(ℝ iff f (x) ( g(x)

( f (x), g(x) ( ℝ[x],

f (c) = g(c) (c(ℝ iff f (x) ( g(x)

Largrange’s Interpolation Formula: 

For some distinct numbers
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Fundamental Theorem of Algebra:
f (x) ( ℂ[x], ((ℂ s.t. f () = 0

( 
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(i(ℂ
Coefficients and Roots: 

· The roots of 
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(
In a nth degree equation in x with 1 as leading coefficient, the coefficient of xn–k is the sum of the nCk products of k roots in different combination, having the sign of (–1)k.
· In the cubic equation, x3 + px2 + qx + r = 0 :
p
= –( +  + 
q
=  +  + 
r
= –
Newton’s formulae for the sums of powers of roots:

· The roots of 
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· Defined 
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· If r  n:
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· If r ( n:
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Transformation of roots:

· The roots of 
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· The equation that gives x =
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· The equation that gives x =
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· The equation that gives x =
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· The equation that gives x =
[image: image38.wmf]n

i

i

i

=

=

þ

ý

ü

î

í

ì

1

1

a

 as roots is:


[image: image39.wmf]0

)

1

(

=

x

f


Cubic Equation:

· Std cubic eqn: x3 + px + q = 0

· Roots: 
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( u3, v3 are solutions of 
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· General eqn: x3 + px2 + qx + r = 0

· Roots: 
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Multiple roots

Repeating Roots:

· A polynomial f(x) has  as a multiple zero iff f(x) = q(x) (x–)k

(q(x)( ℝ[x], k(ℕ, k(2

· f(x)(ℝ[x], f(x) has  as multiple zero iff f() = f’() = 0

· If (x–)k| f (x) ( (x–)k+1(f (x), then  is called a zero of f (x) with multiplicity k 

( f (x) = q(x) (x–)k

(q(x)(ℝ[x],
q()(0

· If (x–)k| f (x) then (x–)k–1| f ’(x)
· If (x–)k–1| f ’(x) ( f()=0
then (x–)k| f (x)
· If f (x) and f ’(x) are relative prime, f (x) have no repeated roots

Taylor’s Theorem:

· If 
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· f(x)(ℝ[x],
deg f(x)=n, h(ℝ,
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( Taylor’s theorem
· f(x)(ℝ[x],
deg f(x)=n, h(ℝ,
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( Maclaurin’s theorem / Stirling’s theorem
· By Taylor’s theorem,
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Rational, irrational & imaginary roots:

· 
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(ak(ℤ,
If 
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, where p and q are relative prime, is a rational root of f (x) = 0 then p | an ( q | a0
· 
[image: image60.wmf]å

=

=

n

k

k

k

x

a

x

f

0

)

(


(ak(ℚ , 
p, q, r(ℚ
If 
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 is a root of f (x) = 0 then 
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 is also a root

· 
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(ak(ℝ , 
a, b (ℝ
If a+bi is a root of f (x) = 0 then a–bi is also a root

( A polynomial equation with real coefficients and odd degree has at least one real root

· If 
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(ak(ℝ+ , 

f (x) = 0 has no positive roots

· If 
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(ak(ℝ+ , 
f (x) = 0 has no negative roots

· f(x)(ℝ[x],
(ℝ+,
if the coefficients of all terms in the quotient and remainder are positive in f(x) ( (x–) ,
then f(x) = 0 has no roots greater than or equal to 
· f(x)(ℝ[x],
a, b(ℝ,
ab,
if f(a) and f(b) are in different signs, then there are odd number of real roots, including repeated roots, in (a, b) of the equation f(x) = 0

Partial Fractions

Algebraic fraction:

· A rational algebraic expression

· The quotient of two polynomials

( 
[image: image66.wmf])
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(P(x), Q(x)(ℝ[x],
Q(x) ( 0

( R(x) is a proper fraction if
deg P(x)  deg Q(x)

( R(x) is an improper fraction if deg P(x) ( deg Q(x)

( R(x) is called irreducible if P(x) and Q(x) have no common factor

Partial fractions:

· If 
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 is a proper rational expression where Q1(x), Q2(x) are relative prime polynomials, then (P1(x), P2(x)(ℝ[x] s.t. 
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· Breaks a rational expression into an algebraic sum of several proper fractions

· If the denominator contains non-repeated linear factors only, each factor can be the denominator of one of the partial fractions, i.e.:
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· If the denominator contains linear and quadratic factors with multiplicity ki(1, each factor in multiplicity k(ki can be the denominator of one of the partial fractions, which the linear ones have the numerator in ℝ and the quadratic ones with the numerator in 1st degree polynomials, i.e.:
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� Relative prime = Coprime


� Zero of f (x) with multiplicity k = k-multiple root of equation f (x) = 0


� Prime polynomial = Irreducible polynomial�	( A polynomial that cannot be expressed as the product of two polynomials of ℝ[x]
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